Third Cycle Programmes
    (Doctorate Degree)
Second Cycle Programmes
    (Master's Degree)
First Cycle Programmes
    (Bachelor's Degree)
Short Cycle Programmes
    (Associate's Degree)
 
Second Cycle Programmes (Master's Degree)

Graduate School of Natural and Applied Sciences - Mathematics - Matematics - Second cycle with Thesis



General Description
History
Qualification Awarded
Level of Qualification
Second Cycle
Specific Admission Requirements
Specific Arrangements For Recognition Of Prior Learning (Formal, Non-Formal and Informal)
Qualification Requirements and Regulations
Profile of The Programme
Occupational Profiles of Graduates With Examples
Access to Further Studies
Examination Regulations, Assessment and Grading
Graduation Requirements
Mode of Study (Full-Time, Part-Time, E-Learning )
-
Address, Programme Director or Equivalent
Facilities

Key Learning Outcomes
1Çalışma hayatında etik sorumlulukların gereklerini yerine getirebilme.
2Bilim tarihi ve bilimsel bilginin üretimiyle ilgili bilgi edinebilme.
3Çalışma hayatı ve sosyal yaşam ile ilgili konularda bireysel ve takım çalışmaları yapabilme.
4Alanındaki bilgileri izleyebilecek ve meslektaşları ile iletişim kurabilecek düzeyde bir yabancı dili geliştirebilme.
5Matematik ile ilgili kavramları özümseyebilme ve bu kavramları ilişkilendirebilme.
6Bilimsel, matematiksel düşünme yeteneği kazanabilme ve ilgili alanlarda bu bilgiyi kullanabilme.
7Temel matematiksel beceriler (problem çözme, akıl yürütme, ilişkilendirme, genelleme) ve bu becerilere dayalı yetenekler edinebilme. (Rasyonel düşünme tekniği kazandırabilme)
8Bilim ve teknolojideki gelişmeleri izleme ve kendini sürekli yenileme becerisi kazanabilme.
9Bilgiye erişebilme ve bu amaçla kaynak araştırması yapabilme, veri tabanlarını ve diğer bilgi kaynaklarını kullanabilme becerisine sahip olabilme.
10Eleştirel ve yaratıcı düşünmenin ve problem çözme becerilerinin gelişimi için uygun yöntem ve tekniklerle etkinlikler düzenleyebilme.
11Alanı ile ilgili konularda düşüncelerini ve konulara ilişkin çözüm önerilerini yazılı ve sözlü olarak aktarabilme.
12Matematiksel bilgi birikimlerini teknolojide kullanabilme.
13Gerçek dünya problemlerinde Matematiksel prensipleri uygulayabilme.
14Farklı disiplinlerin yaklaşım ve bilgilerini Matematikte kullanabilme.
15Matematik alanındaki bir problemi, bağımsız olarak kurgulayabilme, çözüm yöntemi geliştirebilme, çözebilme, sonuçları değerlendirebilme ve gerektiğinde uygulayabilme.

Key Programme Learning Outcomes - NQF for HE in Turkey
TYYÇKey Learning Outcomes
00000000000
KNOWLEDGE1
2
SKILLS1
2
3
COMPETENCES (Competence to Work Independently and Take Responsibility)1
2
3
COMPETENCES (Learning Competence)1
COMPETENCES (Communication and Social Competence)1
2
3
4
COMPETENCES (Field Specific Competence)1
2
3

Course Structure Diagram with Credits
T : Theoretical P: Practice L : Laboratory
1. Semester
No Course Unit Code Course Unit Title Type of Course T P L ECTS
1 9101075032013 Comprehensive Studies in Mathematics I Compulsory 3 0 0 8
2 MAT-MAT-SG-YL-G ELECTIVE COURSES 1 Elective - - - 16
3 9101077072018 Scientific Research and Publication Ethics Compulsory 2 0 0 6
Total 5 0 0 30
 
2. Semester
No Course Unit Code Course Unit Title Type of Course T P L ECTS
1 MAT-MAT-SG-YL-B ELECTIVE COURSES 1 Elective - - - 24
2 FENYLSEM Seminar Compulsory 0 0 0 6
Total 0 0 0 30
 
3. Semester
No Course Unit Code Course Unit Title Type of Course T P L ECTS
1 YLUAD591 Specialization Field Compulsory 0 0 0 4
2 YLTEZ591 Thesis Study Compulsory 0 0 0 26
Total 0 0 0 30
 
4. Semester
No Course Unit Code Course Unit Title Type of Course T P L ECTS
1 YLUAD591 Specialization Field Compulsory 0 0 0 4
2 YLTEZ592 Thesis Study Compulsory 0 0 0 26
Total 0 0 0 30
 
ELECTIVE COURSES 1
No Course Unit Code Course Unit Title Type of Course T P L ECTS
1 9101075172007 Higher Differential Geometry I Elective 3 0 0 8
2 9101075212002 Geometric Design I Elective 3 0 0 8
3 9101075932013 Generalized Topology I Elective 3 0 0 8
4 9101077112017 Lie Groupoids I Elective 3 0 0 8
ELECTIVE COURSES 1
No Course Unit Code Course Unit Title Type of Course T P L ECTS
1 9101075062001 Linear Algebra Elective 3 0 0 8
2 9101075082012 Selected Topics in Ring Theory Elective 3 0 0 8
3 9101075102001 Group Representation Theory Elective 3 0 0 8
4 9101075122008 Module Theory Elective 3 0 0 8
5 9101075142007 Asymptotic Behavior of Difference Equations Elective 3 0 0 8
6 9101075162002 Geometric Design II Elective 3 0 0 8
7 9101075201998 Topology II Elective 3 0 0 8
8 9101075221998 Algebraic Topology II Elective 3 0 0 8
9 9101075242000 Introduction to Modal Logic II Elective 3 0 0 8
10 9101075261998 Graph Theory an Algorithmic Approach Elective 3 0 0 8
11 9101075282002 Extramal Problems and Special Graphs Elective 3 0 0 8
12 9101075442002 Cryptosistems Elective 3 0 0 8
13 9101075462004 Dynamic Equations on Time Scales Elective 3 0 0 8
14 9101075502000 Introduction to Homological Algebra Elective 3 0 0 8
15 9101075522000 Finite Element Methods Elective 3 0 0 8
16 9101075562007 Higher Differential Geometry II Elective 3 0 0 8
17 9101075602004 Introduction to Logic, Proof Theory II Elective 3 0 0 8
18 9101075622005 Introduction to Lattice Theory II Elective 3 0 0 8
19 9101075642005 Matroids and Encodings in Graphs Elective 3 0 0 8
20 9101075682014 Modern Group Analysis:Lie Algebra Elective 3 0 0 8
21 9101075702006 Global Optimization II Elective 3 0 0 8
22 9101075722014 Stochastik Differential Equations Elective 3 0 0 8
23 9101075742014 Graph Theory and Complex Networks II Elective 3 0 0 8
24 9101075762014 Matrix Transformation II Elective 3 0 0 8
25 9101075782010 Nonlinear Optimization II Elective 3 0 0 8
26 9101075802010 Classical Methods in Summability Elective 3 0 0 8
27 9101075822011 Divergent Series II Elective 3 0 0 8
28 9101075842011 BCK-Algebras Elective 3 0 0 8
29 9101075862013 Ideal Topological Spaces II Elective 3 0 0 8
30 9101075882013 Generalized Topology II Elective 3 0 0 8
31 9101075902014 Selected Topics in Analysis II Elective 3 0 0 8
32 9101075922017 Lie Groupoids II Elective 3 0 0 8
33 9101075942017 Semi-Riemannian Geometry Elective 3 0 0 8
34 9101075962017 Tensor Geometry Elective 3 0 0 8
35 9101077062014 High-Performance Computing Elective 3 0 0 8
36 9101077082018 Fixed Point Theory II Elective 3 0 0 8
37 9101077102018 Positive Solutions of Nonlinear Boundary Value Problems II Elective 3 0 0 8
 
Ege University, Bornova - İzmir / TURKEY • Phone: +90 232 311 10 10 • e-mail: intrec@mail.ege.edu.tr