Third Cycle Programmes
    (Doctorate Degree)
Second Cycle Programmes
    (Master's Degree)
First Cycle Programmes
    (Bachelor's Degree)
Short Cycle Programmes
    (Associate's Degree)
 
Third Cycle Programmes (Doctorate Degree)

Graduate School of Natural and Applied Sciences - Mathematics - Matematics - Third Cycle



General Description
History
Qualification Awarded
Level of Qualification
Third Cycle
Specific Admission Requirements
Specific Arrangements For Recognition Of Prior Learning (Formal, Non-Formal and Informal)
Qualification Requirements and Regulations
Profile of The Programme
Occupational Profiles of Graduates With Examples
Access to Further Studies
Examination Regulations, Assessment and Grading
Graduation Requirements
Graduation Requirements
Mode of Study (Full-Time, Part-Time, E-Learning )
-
Address, Programme Director or Equivalent
Prof. Dr. Bayram ŞAHİN
Address, Programme Director or Equivalent
Prof. Dr. Bayram ŞAHİN
Facilities
In our department there are 11 professor, 11 associate professor, 3 assistant professor, 4 university lecturer, 8 research assistant and 1314 students.

Key Learning Outcomes
1Çalışma hayatında etik sorumlulukların gereklerini yerine getirebilme.
2Çalışma hayatı ve sosyal yaşam ile ilgili konularda bireysel ve takım çalışmaları yapabilme.
3Alanındaki bilgileri izleyebilecek ve meslektaşları ile iletişim kurabilecek düzeyde bir yabancı dili geliştirebilme.
4Matematik ile ilgili kavramları özümseyebilme ve bu kavramları ilişkilendirebilme.
5Bilimsel, matematiksel düşünme yeteneği kazanabilme ve ilgili alanlarda bu bilgiyi kullanabilme.
6Temel matematiksel beceriler (problem çözme, akıl yürütme, ilişkilendirme, genelleme) ve bu becerilere dayalı yetenekler edinebilme. (Rasyonel düşünme tekniği kazandırabilme)
7Bilim ve teknolojideki gelişmeleri izleme ve kendini sürekli yenileme becerisi kazanabilme.
8Bilgiye erişebilme ve bu amaçla kaynak araştırması yapabilme, veri tabanlarını ve diğer bilgi kaynaklarını kullanabilme becerisine sahip olabilme.
9Bilim tarihi ve bilimsel bilginin üretimiyle ilgili bilgi edinebilme.
10Eleştirel ve yaratıcı düşünmenin ve problem çözme becerilerinin gelişimi için uygun yöntem ve tekniklerle etkinlikler düzenleyebilme.
11Alanı ile ilgili konularda düşüncelerini ve konulara ilişkin çözüm önerilerini yazılı ve sözlü olarak aktarabilme.
12Matematiksel bilgi birikimlerini teknolojide kullanabilme.
13Gerçek dünya problemlerinde Matematiksel prensipleri uygulayabilme.
14Farklı disiplinlerin yaklaşım ve bilgilerini Matematikte kullanabilme.
15Matematik alanındaki bir problemi, bağımsız olarak kurgulayabilme, çözüm yöntemi geliştirebilme, çözebilme, sonuçları değerlendirebilme ve gerektiğinde uygulayabilme.

Key Programme Learning Outcomes - NQF for HE in Turkey
TYYÇKey Learning Outcomes
000000000000
KNOWLEDGE1
2
SKILLS1
2
3
4
COMPETENCES (Competence to Work Independently and Take Responsibility)1
2
3
COMPETENCES (Learning Competence)1
COMPETENCES (Communication and Social Competence)1
2
3
COMPETENCES (Field Specific Competence)1
2
3

Course Structure Diagram with Credits
T : Theoretical P: Practice L : Laboratory
1. Semester
No Course Unit Code Course Unit Title Type of Course T P L ECTS
1 MAT-SG-DOK-G ELECTIVE COURSES 1 Elective - - - 30
2 9101076892018 Scientific Research and Publication Ethics Compulsory 2 0 0 6
Total 2 0 0 36
 
2. Semester
No Course Unit Code Course Unit Title Type of Course T P L ECTS
1 MAT-SG-DOK-B ELECTIVE COURSES 2 Elective - - - 12
2 9101076022015 Selected topics in Mathematics II Compulsory 3 0 0 12
3 FENDRSEM1 SEMINAR I Compulsory 1 0 0 6
Total 4 0 0 30
 
3. Semester
No Course Unit Code Course Unit Title Type of Course T P L ECTS
1 FENDRYET790 Qualifying Exam Compulsory 0 0 0 9
2 DRUAD691 Specialization Field Compulsory 0 0 0 5
3 FENDRTEZONE Thesis Proposal Defense Compulsory 0 0 0 16
Total 0 0 0 30
 
4. Semester
No Course Unit Code Course Unit Title Type of Course T P L ECTS
1 DRUAD691 Specialization Field Compulsory 0 0 0 5
2 DRTEZ692 Thesis Study Compulsory 0 0 0 25
Total 0 0 0 30
 
5. Semester
No Course Unit Code Course Unit Title Type of Course T P L ECTS
1 FENDRSEM2 Seminar II Compulsory 1 0 0 6
2 DRUAD691 Specialization Field Compulsory 0 0 0 5
3 DRTEZ694 Thesis Study Compulsory 0 0 0 19
Total 1 0 0 30
 
6. Semester
No Course Unit Code Course Unit Title Type of Course T P L ECTS
1 DRUAD691 Specialization Field Compulsory 0 0 0 5
2 DRTEZ692 Thesis Study Compulsory 0 0 0 25
Total 0 0 0 30
 
7. Semester
No Course Unit Code Course Unit Title Type of Course T P L ECTS
1 DRUAD691 Specialization Field Compulsory 0 0 0 5
2 DRTEZ692 Thesis Study Compulsory 0 0 0 25
Total 0 0 0 30
 
8. Semester
No Course Unit Code Course Unit Title Type of Course T P L ECTS
1 DRUAD691 Specialization Field Compulsory 0 0 0 5
2 DRTEZ692 Thesis Study Compulsory 0 0 0 25
Total 0 0 0 30
 
ELECTIVE COURSES 1
No Course Unit Code Course Unit Title Type of Course T P L ECTS
1 9101076031998 Groups Theory Elective 3 0 0 8
2 9101076051998 Ring Theory I Elective 3 0 0 8
3 9101076092015 Selected Topics in Summability Theory I Elective 3 0 0 8
4 9101076112001 Graph Theory Techniques in Mathematical Modelling Elective 3 0 0 8
5 9101076132015 Complements on Advanced Analysis Elective 3 0 0 8
6 9101076151998 Fuzzy Topology I Elective 3 0 0 8
7 9101076172013 Theory of Models I Elective 3 0 0 8
8 9101076192012 Selected Topics in Ring Theory Elective 3 0 0 8
9 9101076271998 Numerical Solution of Partial Differential Equations and Boundary Value Elective 3 0 0 8
10 9101076291998 Numerical Solutions of The Ordinary Differential Equations Elective 3 0 0 8
11 9101076312005 Calculus on Time Scales Elective 3 0 0 8
12 9101076332014 Directed Graphs Elective 3 0 0 8
13 9101076392005 Many-Dimensional Modal Logics I Elective 3 0 0 8
14 9101076452012 The Design and Analysis of Computer Algorithms Elective 3 0 0 8
15 9101076472002 Homotopy Theory I Elective 3 0 0 8
16 9101076492019 Foliations Theory I Elective 3 0 0 0
17 9101076512019 Generalized Geometry I Elective 3 0 0 0
18 9101076532019 Convergence Methods for Double Sequences and Applications I Elective 3 0 0 0
19 9101076552007 Near Rings Elective 3 0 0 8
20 9101076572019 Applications of Fixed Point Theory I Elective 3 0 0 0
21 9101076592015 Topics Algebraic Topology Elective 3 0 0 8
22 9101076612008 Dynamic Systems on Time Scales Elective 3 0 0 8
23 9101076632009 Differential Topology I Elective 3 0 0 8
24 9101076652009 Artifical Intelligent Techniquies of the Solving of the Optimization Problems I Elective 3 0 0 8
25 9101076712010 Number-Theoretic Algorithms in Cryptography Elective 3 0 0 8
26 9101076732011 Digital Topolgy I Elective 3 0 0 8
27 9101076752015 Sequence Spaces and Summability I Elective 3 0 0 8
28 9101076772011 Topics in Time Scales I Elective 3 0 0 8
29 9101076812013 Advanced Topology I Elective 3 0 0 8
30 9101076832014 Graph Theory Wıth Applıcatıons To Computer Scıence II Elective 3 0 0 8
31 9101076852014 Graph Theory With Applications to Computer Science I Elective 3 0 0 8
32 9101076872017 Mappings Between Manifolds I Elective 3 0 0 8
33 9101076912017 Geometric Structures On Manifolds Elective 3 0 0 8
34 9101076932017 Degenerate Differential Geometry Elective 3 0 0 8
35 9101076952018 Abstract Measurement Theory I Elective 3 0 0 8
36 9101076972018 Special Topics in Functional Analysis Elective 3 0 0 8
37 EBB6832017 Planning and Assesment in Education Elective 3 2 0 6
38 EBB6852017 Development and Learning Elective 3 0 0 4
ELECTIVE COURSES 2
No Course Unit Code Course Unit Title Type of Course T P L ECTS
1 9101076041998 Ring Theory II Elective 3 0 0 8
2 9101076062012 Asymptotic Methods for Partial Differential Equations Elective 3 0 0 8
3 9101076082011 Noncommutative Rings II Elective 3 0 0 8
4 9101076102011 Digital Topolgy II Elective 3 0 0 8
5 9101076122011 Sequence Spaces and Summability II Elective 3 0 0 8
6 9101076142011 Topics in Time Scales II Elective 3 0 0 8
7 9101076162012 Selected Topics in Summability Theory II Elective 3 0 0 8
8 9101076182001 Hilbert Spaces and Operators Theory Elective 3 0 0 8
9 9101076221998 Fuzzy Topology II Elective 3 0 0 8
10 9101076241998 Topological Continuities Elective 3 0 0 8
11 9101076261998 Theory of Models II Elective 3 0 0 8
12 9101076322013 Numerical Functional Analysis Elective 3 0 0 8
13 9101076342001 Perturbation Techniques Elective 3 0 0 8
14 9101076362002 Free and Moving Boundary Problems Elective 3 0 0 8
15 9101076402005 Many-Dimensional Modal Logics II Elective 3 0 0 8
16 9101076462019 Generalized Geometry II Elective 3 0 0 0
17 9101076482015 Mathematical Analysis and Design of The Algorithms II Elective 3 0 0 12
18 9101076502019 Applications of Fixed Point Theory II Elective 3 0 0 0
19 9101076522002 Graphical Enumeration Elective 3 0 0 8
20 9101076542019 Foliations Theory II Elective 3 0 0 0
21 9101076622009 Differential Topology II Elective 3 0 0 8
22 9101076642000 Homotopy Theory II Elective 3 0 0 8
23 9101076702006 Mathematical Foundations of Neural Networks Elective 3 0 0 8
24 9101076722006 Mathematical Theory of Inverse Problems and Their Applications Elective 3 0 0 8
25 9101076742006 Theory of Integral Equations and Their Numerical Solutions Elective 3 0 0 8
26 9101076762007 Rings with Derivations Elective 3 0 0 8
27 9101076782007 Algebra II Elective 3 0 0 8
28 9101076862013 Advanced Topology II Elective 3 0 0 8
29 9101076882014 Selected Topics in Applied Mathematics II Elective 3 0 0 8
30 9101076922017 Mappings Between Manifolds II Elective 3 0 0 8
31 9101076942017 Submanifolds Theory Elective 3 0 0 8
32 9101076962018 Abstract Measurement Theory II Elective 3 0 0 8
33 9101076982018 Advanced Dynamic Equations on Time Scales Elective 3 0 0 8
 
Ege University, Bornova - İzmir / TURKEY • Phone: +90 232 311 10 10 • e-mail: intrec@mail.ege.edu.tr